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A mathematical and numerical investigation of the flow over 2D and 3D hilly terrain in the atmospheric
boundary layer (ABL) is presented including comparison with an experiment. Mathematical model is based
upon the RANS equations for an incompressible flow with an algebraic turbulence closure and given boundary
conditions. Also additional transport equations for concentration and potential temperature have been
considered. The artificial compressibility method with conjunction of finite volume method and the explicit
Runge — Kutta multistage scheme is used for numerical analysis.

Nomenclature
L — Characteristic length; U — Characteristic velocity; h — Height of hill; (u, v, w)T — Non-dimensional ve-
locity vector; p — Non-dimensional pressure; x, y, z — Non-dimensional space variables; t — Non-dimensional
time; Re — Laminar Reynolds number; ReT — Turbulent Reynolds number; K — Turbulent diffusion coeffi-
cient; Θ — Potential temperature; C — Concentration of passive pollutant; x, y, z — Space derivatives; t —
Time derivative; i, j, k — Indexes in the x-, y- and z-directions; n — Discrete time level; ∆x,∆y,∆z — Space
and time increments

1. Introduction

The lowest part of the atmosphere is often called the atmospheric boundary layer (ABL). Its thickness depends
on various conditions and ranges from several hundreds of meters to approximately two kilometers. The ABL
is significantly influenced by the roughness of the earth’s ground, geostrophic wind and mainly by the vertical
temperature gradient which is associated with the atmospheric thermal stratification.

The ABL has a very close relation to a human activity. Prediction of wind field over complex terrain plays
a dominant role in many engineering applications such as evaluation of environmental impact by pollutant
dispersion, sitting of wind mills and airports etc. Practically, an infinite number of situations are possible even
for the wind flow over a single hill due to varieties of hill geometry and approaching flow conditions.

Nevertheless, there are still gaps in the detailed understanding of the turbulent flow including flow separation.
Because of the difficulties and high cost of experiments associated with the investigation of all possible situations,
a more reliable numerical method is desired to predict the complex wind flow over such hilly terrain.

2. Mathematical model

We suppose turbulent, viscous, incompressible and stationary flow under stably (∂Θ
∂z

> 0) or neutrally (∂Θ
∂z

= 0)
stratified atmosphere. The buoyancy force is neglected.

3. Governing equations

Mathematical model is given by the Reynolds averaged Navier-Stokes equations in conservative, dimensionless
and vector form in the physical domain Ω (Kozel [1], Jaňour [2])

Fx +Gy +Hz = (K · R)x + (K · S)y + (K · T )z (1)
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The artificial compressibility method is used for numerical analysis

Wt + Fx +Gy +Hz = (K ·R)x + (K · S)y + (K · T )z (2)

We solve system (2) in Ω under stationary boundary conditions for t → ∞ (t is an artificial time) to obtain
expected steady-state solution W ,

W = ‖p, u, v, w,Θ, C‖T

F = ‖u, u2 + p, uv, uw, uΘ, uC‖T

G = ‖v, vu, v2 + p, vw, vΘ, vC‖T

H = ‖w,wu, wv, w2 + p, wΘ, wC‖T

R = ‖0, ux, vx, wx,
1
σΘ

Θx,
1
σC

Cx‖T

S = ‖0, uy, vy, wy,
1
σΘ

Θy,
1
σC

Cy‖T

T = ‖0, uz, vz, wz,
1
σΘ

Θz,
1
σC

Cz‖T

where F,G,H denote inviscid fluxes and R, S, T viscous ones, σΘ, σC represent Prandtl’s numbers for potential
temperature Θ and concentration C of passive pollutant, p refers to the pressure and ‖u, v, w ‖T denotes the
velocity vector, K is the diffusivity coefficient, see equation (3).

4. Turbulence model

Closure of the system of governing equations (2) is achieved by a simple algebraic turbulence model which takes
the form (Jaňour [2], Bednář [3], Jaňour [4])

νT = G · l2 ·
√
u2

z + v2
z

where νT is the turbulent viscosity, G the stability parameter and l refers to the Blackadar’s mixing length
computed from

l =
k(z + z0)

1 + k(z+z0)
l∞

where k is the von Karman constant, z0 the roughness length and l∞ denotes the mixing length for z → ∞.
The diffusion coefficient K is taken as

K =
1
Re

+
1

ReT
(3)

where Re is laminar, ReT is turbulent Reynolds number respectively.

5. Initial and boundary conditions

The following stationary initial and boundary conditions are considered (Jaňour [2], Bednář [3])

• initial conditions in domain Ω

— p, u, v, w, Θ, C given

• boundary conditions on ∂Ω

— inlet: p given or px = 0, u, v, w,Θ, C prescribed from experiment or theory (Schlichting [5]), point
source of C is usually assumed

— outlet: p given, ux = vx = wx = 0,Θx = 0, Cx = 0

— bottom face (ground): u = v = w = 0 as no–slip wall b.c., Θ = 0, ∂C
∂n = 0

— top face: p given, u given or uz = 0, v given or vz = 0, w given or wz = 0,Θz = 0, Cz = 0

— side faces: periodic

We expect that the solution of (2) will be steady for t → ∞ and also fulfilling (1).
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6. Numerical model

Finite volume method (cell-centered) together with the multi–stage explicit Runge—Kutta time integration
scheme is used to solve (2) (Kozel [1], Hirsch [6]). After integration of (2) over control cell Ωijk we obtain∫∫∫

Ωijk

Wt dV = −
∫∫∫

Ωijk

[
(F −K · R)x + (G−K · S)y + (H −K · T )z

]
dV

and using the Divergence theorem

Wt

∣∣∣
ijk

= − 1
µijk

∮∮
∂Ωijk

[
(F −K · R) dS1 + (G−K · S) dS2 + (H −K · T ) dS3

]
(4)

where Wt

∣∣∣
ijk

is the mean value of W over cell Ωijk and µijk =
∫∫∫

Ωijk
dV is volume of control cell.

The central differences are used for space discretization in order to obtain semi–discrete system of equations.

Wt

∣∣∣
ijk

(t) = LWijk(t) (5)

where LWijk denotes approximation of the right-hand side of (4)

LWijk = − 1
µijk

6∑
l=1

[
(F̃l −Kl · R̃l)∆Sl

1 + (G̃l −Kl · S̃l)∆Sl
2 + (H̃l −Kl · T̃l)∆Sl

3

]

where all symbols denoted with subscript l refer to the l–th cell face of Ωijk and (∆Sl
1,∆S

l
2,∆S

l
3) represents

the l–th outer normal vector.
Finally, the (3)–stage explicit Runge—Kutta time integration scheme is applied to system (5)

W
(0)
ijk = Wn

ijk

W
(l+1)
ijk = W

(0)
ijk − αl ·∆t · BW (l)

ijk, l = 0, . . . , 2

Wn+1
ijk = W

(3)
ijk

where α1 = 1/2, α2 = 1/2, α3 = 1. The operator BW (l)
ijk defines a steady residual in the l–th time level for each

control cell Ωijk

BW (l)
ijk = LW (l)

ijk + DW
(0)
ijk

where LWijk corresponds to operator resulting from the space discretization of system (4) and the second term
DWijk represents the artificial diffusion term of the 2nd or 4th order for which it has the following form

DWijk = εx∆x4Wxxxx

∣∣∣
ijk

+ εy∆y4Wyyyy

∣∣∣
ijk

+ εz∆z4Wzzzz

∣∣∣
ijk

The stability criterion for regular orthogonal mesh is applied by

∆t ≤ min
Ωijk

CFL

�A

∆x + �B

∆y + �C

∆z + 2 ·K
(

1
∆x2 + 1

∆y2 + 1
∆z2

)
and the rate of convergence is examined using residual L2 norm

‖RezWn‖L2 = const ·
(∑

i,j,k

(BWn
ijk)

2

) 1
2

.

7. Some numerical results

An IBM SP2 machine in the super-computing center of the Czech Technical University of Prague and worksta-
tions of the Dept. of Technical Mathematics, CTU have been used for all computations.
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Comparison with 2D experiment
Fully developed channel flow over 2D polynomial–shaped hill mounted on a flat plate was chosen as a test–
case. The results from experimental measurement (Almeida [7]) and reference numerical simulations with k− ε
turbulence model (Davroux [8]) have been used for comparison with our computations performed on three
different grids, see Fig. 1–4. Notice that both sets of results are also available in the ERCOFTAC database
(see [9]).

The channel height is 170 mm and the hill height is h = 28 mm (∼ 16 % hill). Mean centerline velocity, U0,
and hill height, h, have been used to nondimensionalize the velocity profiles.

Main flow parameters are:
— mean centerline velocity U0 = 2.147m/s
— water kinematic viscosity ν = 1 · 10−6 m2/s
— Reynolds number Re = U0 · h/ν = 6 · 104
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Fine mesh 400x160
Reference k−ε solution

Fig. 1: Profiles of streamwise velocity component at
the position 50 mm before hill summit.
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Fig. 2: Profiles of streamwise velocity component at
the hill summit.
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Fig. 3: Profiles of streamwise velocity component at
the position 50 mm after hill summit.
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Fig. 4: Streamwise cut over the domain and over
hill, isolines of velocity magnitude.
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Some 3D results

We present some 3D results (Kozel et. al. [10], [11], [12]) from computations over a single hill configuration,
see Fig. 5–8.

Dimensions of the physical domain are: 8x4x1 km for length, width and height respectively and 10 % hill is
assumed. The characteristic free–stream velocity is U = 1 m/s and characteristic length L = 1 km leading to
the Reynolds number Re = 7 · 107, the uniform velocity profile is imposed at the inlet and stably stratified
atmosphere is supposed ∂Θ

∂z = 0.005 K/m.
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Fig. 5: Computational domain with a single hill
configuration.
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Fig. 6: Single hill configuration, isolines of velocity
magnitude on xy-cutplane over the domain at

constant height z=20 m.
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Fig. 7: Single hill configuration, isolines of velocity
magnitude on streamwise xz-cutplane over the

domain and over hill.
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Fig. 8: Single hill configuration, isolines of potential
temperature on xy-cutplane over the domain at

constant height z=20 m.

We also present some 3D results obtained from simulations over a complex hilly terrain, see Fig. 9–10, and also
double hill configuration, see Fig. 11–12. The Reynolds number in these cases is Re = 1 · 108.
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Z

Fig. 9: Part of computational domain showing a
complex 3D hilly terrain. Fig. 10: Isolines of velocity on the ground.

Fig. 11: Double–hill configuration, streamwise
cutplane over the domain and isolines of velocity.
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Fig. 12: Double–hill configuration, streamwise
cutplane over the domain and vector field.

8. Summary and Conclusion

• A number of numerical simulations with high Reynolds numbers have been performed for the flow over three–
dimensional single hill or system of hills using different grids and various initial and boundary conditions have
been tested. The curved shapes of the geometry were fitted by means of the Cartesian non–orthogonal grids.
• The calculations have shown that the flow field is sensitive to the specification of the inflow conditions.
Transport equations for the potential temperature and concentration of passive pollutant were also solved to
obtain temperature and concentration fields above 3D–topography.
• The calculations have confirmed that the artificial diffusion term plays an important role in the numerical
algorithm. It does inhibit various small oscillations arising in the flow field. These oscillations appear due to
the central differencing scheme and low level of artificial viscosity.
• Because of the absence of some real experiment it seems to be very difficult to carry out a quantitative compar-
ison between measured and computed data. Therefore, our results have been compared with the experimental
data (Almeida [7]) and the reference numerical data (Davroux [8]) obtained from a simplified test–case config-
uration of fully developed channel flow over a 2D hill. A good agreement has been found for velocity profiles
up to hill summit streamwise position. However, the recirculation area behind a hill has shown some deviations
of velocity profiles from target values most probably due to the simplicity of turbulence model. Additional
simulations and comparisons with other data sets are required.
• Thus, the implementation of a more complex turbulence model (Jaňour [4]) suitable for the ABL seems to be
an important point of mathematical model development as well as the application of higher order schemes or
implicit schemes to accelerate the computations and to increase the numerical accuracy. Also an employment of
some orthogonal computational grids would be valuable in order to test the effect of grid orthogonality. Notice,
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that the buoyancy forces plays one of the key role in the ABL and hence they should be incorporated into the
physical model when thermal stratification is assumed.
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